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Abstract: In this paper, we consider the following initial-boundary problem

(P )


utt(x, t)− ξLu(x, t) + b|ut(x, t)|q = f(u(x, t)) in Ω× (0, T ),
u(x, t) = 0 on ∂Ω× (0, T ),
u(x, 0) = 0 in Ω,
ut(x, 0) = 0 in Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, L is an elliptic
operator, where initial data in which our initial energy can take positive values,
with initial and boundary conditions of Dirichlet type, and the nonlinear function
f(s) is a positive, increasing and convex function for the nonnegative values of s
and b, ξ is a positive parameter.
This work is concerned with a nonlinear wave equation with nonlinear source terms
acting in this equation. We will prove that the solution of our considered problem
blows up in finite time provided that the initial data and the parameter ξ are small
enough.
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Under some assumptions, we show that the solution of the above problem blows
up in a finite time and its blow-up time goes to the one of the solution of the
following differential equations{

α
′′
(t) = f(α(t)), t > 0

α(0) = 0, α′(0) = 0.

Finally, we give some numerical results to illustrate our analysis.

Keywords and Phrases: Nonlinear wave equation, nonlinear wave, blow-up, con-
vergence, initial boundary value problem, nonlinear hyperbolic equation, asymp-
totic behavior, finite difference method, numerical blow-up time.
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1. Introduction
Let Ω be a bounded domain in RN with smooth boundary ∂Ω. Consider the

following initial-boundary value problem

utt(x, t)− ξLu(x, t) + b|ut(x, t)|q = f(u(x, t)) in Ω× (0, T ), (1.1)

u(x, t) = 0 on ∂Ω× (0, T ), (1.2)

u(x, 0) = 0 in Ω, (1.3)

ut(x, 0) = 0 in Ω, (1.4)

where f(s) is a positive, increasing and convex function for the nonnegative values
of s,

∫∞
0

ds
f(s)

< +∞, and b, ξ is a positive parameter,
A great number of processes of the applied sciences can be modeled by means of

evolution equations involving differential operators, or systems of such equations,
hyperbolic partial differential equations are used to describe evolutionary processes
with the property that information propagate with a finite speed. One of the
simplest and therefore standard models is that of the free wave equation.

utt − c2∆u = 0,

where c denotes the speed of propagation and ∆ =
∑n

i=1 ∂
2
i , the usual Laplacian in

Euclidean space. This equation arises together with certain initial and boundary
conditions if one models the oscillatory behaviour of vibrating strings, membranes
or the propagation of sound.

Here u = u(t, x) denotes a displacement or a pressure and thus a time-dependent
scalar field. In electrodynamics the unknowns are the electric and the magnetic
field, which satisfy in vacuum a related equation. Oscillations of vibrating strings
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and membranes are described by quasi-linear equations due to a relation between
length/area deformation and energy.

Solutions of nonlinear wave equations which blow up in a finite time have been
the subject of investigation of many authors (see [5], [8], [12], [14], [28], [29], [35],
and the references cited therein).
By standard methods, local existence, uniqueness, blow up and global existence
have been treated by a number of authors ( Keller [23], Sattinger [35]) where they
have shown that the solutions to the initial value problem or to initial-boundary
value problems for classical nonlinear wave equations in the form

Putt + Au = F (u),

in one, two or three dimensions are not stable in time for arbitrary initial data and
arbitrary nonlinearities. Their proofs of these results are based upon a comparison
principle together with a Huygens-Fresnel principle coupled with solving an initial
value problem for an associated ordinary differential equation in time. The size of
the nonlinearity generally determines the escape time in their proofs. They proved
under some restrictions on the parameters and the initial data several results on
local existence and global existence of a weak solution. They also showed that any
weak solution with negative initial energy blows up in finite time. See in this regard
[10, 11], [15], [20], [21], [24], [28], [29-30], [38], [32], [42], and references therein.

We mention also the work by Levine and Todorova [26] in which the authors
considered the following Cauchy problem:

utt −∆u+ a|ut|q−2 − b|u|d−2u = 0,

For b = 0, it is well known that the damping term a|ut|q−2 assures global existence
and decay of the solution energy for arbitrary initial data (see [17]).
For a = 0, the source term causes finite-time blow-up of solutions with a large ini-
tial data (negative initial energy) (see [3] ). The interaction between the damping
term a|ut|q−2 and the source term b|u|d−2u makes the problem more interesting.
This situation was first considered by Levine [11, 12] in the linear damping case (q
= 2), where he showed that solutions with negative initial energy blow up in finite
time.
Similar results have also been established by Vitillaro in [38] combined the argu-
ments in [17] to extend these results to situations where the damping is nonlinear
and the solution has positive initial energy.

In this paper, we are interested in the asymptotic behavior of the blow-up time
when b = 0, ξ approaches zero and the initial data is small enough also in the case



112 J. of Ramanujan Society of Mathematics and Mathematical Sciences

where Ω is large enough and its size is taken as parameter.
Our work was motivated by the paper of Friedman and Lacey in [9], where they
have considered the following initial-boundary value problem

ut(x, t) = ε∆u(x, t) + f(u(x, t)) in Ω× (0, T ),
u(x, t) = 0 on ∂Ω× (0, T ),
u(x, 0) = u0(x) in Ω,

where ∆ is the Laplacian, f(s) is a positive, increasing, convex function for the non-
negative values of s, and

∫∞
0

ds
f(s)

<∞, u0(x) is a continuous function in Ω. Under
some additional conditions on the initial data we have shown that the solution of
the above problem blows up in a finite time and its blow-up time tends to the one
of the solution λ(t) of the following differential equation

λ
′
(t) = f(λ(t)), λ(0) = M, (1.5)

as ε goes to zero where M = supx∈Ω u0(x).
The proof developed in [8] are based on the construction of upper and lower so-
lutions and it is difficult to extend the above result to the problems described in
(1.1)-(1.4).
In this paper, we prove a similar result. Precisely, we show that when ξ is small
enough, any solution of (1.1)-(1.4) blows up in a finite time and its blow-up time
tends to the one of the solution α(t) of the following differential equation below

α
′′
(t) = f(α(t)), α(0) = 0, α

′
(0) = 0. (1.6)

We also prove that the above result remains valid if Ω is large enough and its size
is taken as parameter. Our paper is written in the following manner. In the next
section, under some assumptions,we show that any solution u of (1.1)-(1.4) blows
up in a finite time and its blow-up time goes to the one of the solution α(t) of
the differential equation defined in (1.6). Finally, in the last section, we give some
numerical results to illustrate our analysis.

2. Preliminaries and Notations

Throughout this paper Ω be a bounded open subset of RN with smooth bound-
ary ∂Ω. The elliptic operator in divergence form L is defined as follows

Lu =
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
.
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The coefficient aij(x) ∈ C1(Ω) satisfy the following relation aij : Ω → R, aij ∈
C1(Ω), aij = aji, 1 ≤ i, j ≤ N ,

N∑
i,j=1

aij(x)ξiξj ≥ C|ξ|2 for ξ ∈ RN , C > 0,

Here (0, T ) is the maximal time interval of existence of the solution u. The time
T may be finite or infinite. When T is infinite, we say that the solution u exists
globally. When T is finite, the solution u develops a singularity in a finite time,
namely

lim
t→T
‖u(x, t)‖∞ = +∞,

where ‖u(x, t)‖∞ = supx∈Ω |u(x, t)|. In this last case, we say that the solution u
blows up in a finite time and the time T is called the blow-up time of the solution
u.

Throughout this paper, Introduce the function F (s) =
∫ s

0
f(σ)dσ. and we sup-

pose that ∫ ∞
0

ds√
F (s)

< +∞.,

3. Blow-up of the Solution for the Problem

In this section, under some assumptions, we show that any solution u of (1.1)-
(1.4) blows up in a finite time and its blow-up time goes to the one of the solution
of a differential equation defined in (1.6) when ξ tends to zero.
Before starting, let us recall a well known result. Consider the following eigenvalue
problem

−Lϕ = λϕ in Ω, (3.1)

ϕ = 0 on ∂Ω, (3.2)

ϕ > 0 in Ω. (3.3)

The above problem has a solution (ϕ, λ) with λ > 0. We can normalize ϕ so that∫
Ω
ϕdx = 1.

Now, let us state our result on the blow-up.

Theorem 3.1. Let F (z) =
∫ z

0
f(s)ds and suppose that

∫∞
0

ds√
F (s)

< +∞. If ξ <
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λ
∫∞

0
ds
f(s)

then the solution u of (1.1)-(1.4) blows up in a finite time and its blow-up
time T satisfies the following relation

T = Te(1 +
ξA

2
) + o(ξ) as ξ → 0 (3.4)

where Te = 1√
2

∫ +∞
0

ds√
F (s)

is the blow-up time of the solution α(t) of the differential

equation defined in (1.6).
Proof. Since (0, T ) is the maximal time interval on which the solution u exists,
our aim is to show that T is finite and satisfies the above inequality. Introduce the
function v(t) defined as follows

v(t) =

∫
Ω

ϕ(x)u(x, t)dx for t ∈ (0, T ).

Take the derivative of v in t and use(1.1) to obtain

v′′(t) = ξ

∫
Ω

(Lu)ϕ(x)dx+

∫
Ω

f(u)ϕdx.

Applying Green’s formula, we arrive at

v′′(t) = ξ

∫
Ω

uLϕdx+

∫
Ω

f(u)ϕdx.

Using (3.1) and Jensen’s inequality, we find that

v′′(t) ≥ −ξv(t) + f(v(t)),

which implies that

v′′(t) ≥ f(v(t))

(
1− ξv(t)

f(v(t))

)
.

We observe that ∫ ∞
0

ds

f(s)
≥ sup

t≥0

∫ t

0

ds

f(s)
≥ sup

t≥0

t

f(t)

because f(s) is an increasing function for the nonnegative values of s. We deduce
that v′′(t) ≥ (1− ξA)f(v(t)), which implies that

v′(t) ≥ (1− ξA)

∫ t

0

f(v(s))ds, t ∈ (0, T ). (3.5)

v(0) = 0, v′(0) = 0. (3.6)
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Let β(t) be the solution of the following differential equation

β′(t) = (1− ξA)

∫ t

0

f(β(s))ds, t ∈ (0, T0). (3.7)

β(0) = 0, β′(0) = 0, (3.8)

where (0, T0) is the maximal time interval of existence of β(t). It is not hard to see
that

β′′(t) = (1− ξA)f(γ(t)).

Multiply both sides of the above equality by β′(t) to obtain(
(β′(t))2

2

)′
= (1− ξA)(F (β(t)))t. (3.9)

Integrating the equality in (3.9) over (0, t), we find that

(β′(t))2

2
= (1− ξA)(F (β(t))), (3.10)

which implies that

β′(t) =
√

2(1− ξA)F (β(t)).

This equality may be rewritten as follows

dβ√
F (β)

=
√

(1− ξA)dt.

After integration over (0, T0), we discover that

T0 =
1√

2(1− ξA)

∫ ∞
0

ds√
F (s)

.

Since the above integral converges, we see that β(t) blows up at the time T0. On
the other hand, the maximum principle implies that

v(t) ≥ β(t) for t ∈ (0, T∗), (3.11)

where T∗ = min{T0, T}. We deduce that T ≤ T0. Indeed, suppose that T > T0.
From (3.11), it is not difficult to see that v(T0) = ∞ which implies that u blows
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up at the times T0 But this contradicts the fact that (0, T ) is the maximal time
interval of existence of the solution u. Hence, we have

T ≤ T0 =
1√

(1− ξA)

∫ ∞
0

ds√
F (s)

. (3.12)

Now let us define the function U(t) as follows

U(t) = sup
x∈Ω

u(x, t) for t ∈ (0, T ).

Obviously, we have U(0) = 0 and U’(0)=0 and there exists x0 ∈ Ω such U(t) =
u(x0, t). It is not hard to see that Lu(x0, t) ≤ 0. Consequently, we get{

U ′′(t) ≤ f(U(t)),
U(0) = 0, U ′(0) = 0,

which implies that

U ′(t) ≤
∫ t

0

f(U(s))ds, (3.13)

U(0) = 0, U ′(0) = 0. (3.14)

Let ψ be the solution of the differential equation below

ψ′(t) =

∫ t

0

f(ψ(s))ds, t ∈ (0, T1), (3.15)

ψ(0) = 0, ψ′(0) = 0, (3.16)

where (0, T1) is the maximal time interval of existence of ψ(t). As we have seen for
the solution β(t), ψ(t) blows up at the time T1 = 1√

2

∫∞
0

ds√
F (s)

. By the maximum

principle, we find that

U(t) ≤ ψ(t) for t ∈ (0, T∗∗),

where T∗∗ = min{T, T1}. This implies that T∗∗ = T. In fact, if T1 > T, we obtain
U(T ) ≤ ψ(T ) < +∞ which is a contradiction. Therefore

T ≥ T1 =
1√
2

∫ ∞
0

ds√
F (s)

. (3.17)
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Apply Taylor’s expansion to obtain

1√
(1− ξA)

= 1 +
ξA

2
+ o(ξ).

Use (3.12), (3.17) and the above relation to complete the rest of the proof. �

Remark 3.1. If f(s) = es then F (s) = es − 1. Therefore Te = 1√
2

∫ +∞
0

ds√
es−1

and
its value is slightly equal 2.22.

4. Numerical Results

In this section, we consider the radial symmetric solutions of (1.1)-(1.4) when
Ω = B(0, 1), L = ∆ and f(u) = eu. Hence the problem (1.1)-(1.4) may be rewritten
as follows

utt = ξ

(
urr +

N − 1

r
ur

)
+ f(u), r ∈ (0, 1), t ∈ (0, T ) (4.1)

ur(0, t) = 0, u(1, t) = 0 t ∈ (0, T ), (4.2)

u(r, 0) = u0 ut(r, 0) = 0, r ∈ (0, 1). (4.3)

Let I be a positive integer and let h = 1/I. Define the grid xi = ih, 0 ≤ i ≤ I and

approximate the solution u of (4.1)-(4.3) by the solution U
(n)
h = (U

(n)
0 , ..., U

(n)
I ) of

the following explicit scheme

U
(n+1)
0 − 2U

(n)
0 + U

(n−1)
0

∆t2n
= ξN

2U
(n)
1 − 2U

(n)
0

h2
+ f(U

(n)
0 ),

U
(n+1)
i − 2U

(n)
i + U

(n−1)
i

∆t2n
= ξ

(
U

(n)
i+1 − 2U

(n)
i + Un

i−1

h2
+

(N − 1)

ih

U
(n)
i+1 − U

(n)
i−1

2h

)
+ f(U

(n)
i ) 1 ≤ i ≤ I − 1,

U
(n)
I = 0,

U
(0)
i = 0, U

(1)
i = 0, 0 ≤ i ≤ I

Here, we take ∆tn = min(h
2

2
, f(‖Un

h ‖
− 1

2∞ ) with ‖Un)
h ‖∞ = sup0≤i≤I |Un

i |. Let us

notice that the condition ∆tn ≤ h2

2
ensures the stability of the explicit scheme. We

also approximate the solution u of (4.1)− (4.3) by the solution U
(n)
h of the implicit
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scheme below

U
(n+1)
0 − 2U

(n)
0 + U

(n−1)
0

∆t2n
= ξN

2U
(n+1)
1 − 2U

(n+1)
0

h2
+ f(U

(n)
0 ) n > 0,

U
(n+1)
i − 2U

(n)
i + U

(n−1)
i

∆t2n
= ξ

(
U

(n+1)
i+1 − 2U

(n+1)
i + U

(n+1)
i−1

h2
+

(N − 1)

ih

U
(n+1)
i+1 − U (n+1)

i−1

2h

)
+ f(U

(n)
i ), 1 ≤ i ≤ I − 1,

U
(n+1)
I = 0 n > 0,

U
(0)
i = 0, U

(1)
i = 0, 0 ≤ i ≤ I

where ∆tn = min(h
2

2
, f(‖Un

h ‖
− 1

2∞ ))

The explicit scheme may be written as follows:

U
(n+1)
i − 2U

(n)
i + U

(n−1)
i

∆t2n
= ξ

(
U

(n)
i+1 − 2U

(n)
i + Un

i−1

h2
+

(N − 1)

ih

U
(n)
i+1 − U

(n)
i−1

2h

)
+ f(U

(n)
i ), 1 ≤ i ≤ I − 1,

U
(n+1)
i − 2U

(n)
i + U

(n−1)
i = ∆t2nξ

(
U

(n)
i+1 − 2U

(n)
i + U

(n)
i−1

h2
+

(N − 1)

ih

U
(n)
i+1 − U

(n)
i−1

2h

)
+ ∆t2nf(U

(n)
i ), 1 ≤ i ≤ I − 1,

or

U
(n+1)
i = 2U

(n)
i − U

(n−1)
i + ∆t2nξ

(
U

(n)
i+1 − 2U

(n)
i + U

(n)
i−1

h2
+

(N − 1)

ih

U
(n)
i+1 − U

(n)
i−1

2h

)
+ ∆t2nf(U

(n)
i ), 1 ≤ i ≤ I − 1,

or

U
(n+1)
i = 2U

(n)
i − U

(n−1)
i +

ξ∆t2n
h2

U
(n)
i+1 −

2ξ∆t2n
h2

U
(n)
i +

ξ∆t2n
h2

U
(n)
i−1

+
ξ(N − 1)∆t2n

2ih2
U

(n)
i+1 −

ξ(N − 1)∆t2n
2ih2

U
(n)
i−1 + ∆t2nf(U

(n)
i ), 1 ≤ i ≤ I − 1,
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or

U
(n+1)
i =

ξ∆t2n
h2

(1 +
(N − 1)

2i
)U

(n)
i+1 + 2(1− ξ∆t2n

h2
)U

(n)
i

+
ξ∆t2n
h2

(1− (N − 1)

2i
)U

(n)
i−1 − U

(n−1)
i + ∆t2nf(U

(n)
i ), 1 ≤ i ≤ I − 1,

U
(n+1)
I = 0 n > 0,

U
(0)
i = 0, U

(1)
i = 0, 0 ≤ i ≤ I

For i = 1, U
(n+1)
1 = ξ∆t2n

h2 (1 + (N−1)
2

)U
(n)
2 + 2(1− ξ∆t2n

h2 )U
(n)
1 + ξ∆t2n

h2 (1− (N−1)
2i

)U
(n)
0 −

U
(n−1)
1 + ∆t2nf(U

(n)
1 )

or U
(n)
0 = 0 then

For i = 1, U
(n+1)
1 =

(
2(1− ξ∆t2n

h2 )
)
U

(n)
1 +

(
ξ∆t2n
h2 (1 + (N−1)

2i
)
)
U

(n)
2 −U

(n−1)
1 +∆t2nf(U

(n)
1 ),

For i = 2, U
(n+1)
2 =

(
ξ∆t2n
h2 (1− (N−1)

2i
)
)
U

(n)
1 +

(
2(1− ξ∆t2n

h2 )
)
U

(n)
2 +

(
ξ∆t2n
h2 (1 + (N−1)

2
)
)

U
(n)
3 − U (n−1)

2 +∆t2nf(U
(n)
2 ),

For i = 3, U
(n+1)
3 =

(
ξ∆t2n
h2 (1− (N−1)

2
)
)
U

(n)
2 +

(
2(1− ξ∆t2n

h2 )
)
U

(n)
3 +

(
ξ∆t2n
h2 (1 + (N−1)

2
)
)

U
(n)
4 − U (n−1)

3 +∆t2nf(U
(n)
3 ),

...
For i = I − 1, U

(n+1)
I−1 =

(
ξ∆t2n
h2 (1− (N−1)

2i
)U

(n)
I−2

)
+
(

2(1− ξ∆t2n
h2 )

)
UI − 1(n) +(

ξ∆t2n
h2 (1 + (N−1)

2i
)
)
U

(n)
I − UI − 1(n−1)U

(n)
I +∆t2nf(UI − 1(n)),

or U
(n)
I = 0 then

For i = I − 1, U
(n+1)
I−1 =

(
ξ∆t2n
h2 (1− (N−1)

2i
)
)
U

(n)
I−2 +

(
2(1− ξ∆t2n

h2 )
)
UI − 1(n) − UI −

1(n−1) + ∆t2nf(UI − 1(n)),

lead us to the linear system below

U
(n+1)
i = AU

(n)
i +

(
F (n)

)
i

where A is a I × I tridiagonal matrix defined as follows

A =



2(1− ξ∆t2n
h2 )

ξ∆t2n
h2 (1 +

(N−1)
2i

) 0 · · · 0
ξ∆t2n
h2

(1− (N−1)
2i

) 2(1− ξ∆t2n
h2 )

ξ∆t2n
h2 (1 +

(N−1)
2i

) 0 · · ·

0
. . .

. . .
. . .

. . .

...
. . .

. . .
. . . ξ∆t2n

h2 (1 +
(N−1)

2i
)

0 0 · · · ξ∆t2n
h2 (1− (N−1)

2i
) 2(1− ξ∆t2n

h2
)


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implies that

A =


a0 b0 0 · · · 0
c0 a0 b0 0 · · ·
0

. . . . . . . . . . . .
...

. . . . . . . . . b0

0 0 · · · c0 a0


with

a0 = 2(1− ξ∆t2n
h2

),

b0 =
ξ∆t2n
h2

(1 +
(N − 1)

2i
), i = 1, ..., I − 2,

c0 =
ξ∆t2n
h2

(1− (N − 1)

2i
), i = 1, ..., I − 1,(

F (n)
)
i

= −U (n−1)
i + ∆t2nf(U

(n)
i ) and A a three-diagonal matrix verifying the fol-

lowing properties:

Ai,i = 2(1− ξ∆t2n
h2 ) > 0, 0 ≤ i ≤ I and Ai−1,i = ξ∆t2n

h2 (1− (N−1)
2i

)

Ai,i+1 = ξ∆t2n
h2 (1 + (N−1)

2i
), 2 ≤ i ≤ I − 2 so thatAi,i ≥

∑
i 6=j Ai,j

It follows that U
(n)
h exists for n ≥ 0. In addition, since U

(0)
h is nonnegative,U

(n)
h is

also nonnegative for n ≥ 0.
We need the following definition.

Definition 4.1. We say that the discrete solution U
(n)
h of the explicit scheme or

the implicit scheme blows up in a finite time if limn→∞ ‖U (n)
h ‖∞ =∞ and the series∑∞

n=0 ∆tn converges where ‖U (n)
h ‖∞ = sup0≤i≤I |U

(n)
i |. The quantity

∑∞
n=0 ∆tn is

called the numerical blow-up time of the discrete solution U
(n)
h

In the following tables, in rows, we present the numerical blow-up times, the
numbers of iterations n, the CPU times and the orders of the approximations
corresponding to meshes of 16, 32, 64, 128. We take for the The numerical blow-up
time T n =

∑n−1
j=0 ∆tj which is computed at the first time when ∆tn = |T n+1−T n| ≤

10−16. The order(s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.

Numerical experiments for N = 2, f(u) = eu(x,t), and u(x, 0) = 0
First case: ξ = 1/5, u(x, 0) = 0
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Table 1: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the explicit Euler method

I T n n CPU time s
16 2.22401460487680 216 0.015 -
32 2.22219042903374 824 0.031 -
64 2.22164923986443 3152 0.156 1.994
128 2.22149404152201 12037 5.296 1.998
256 2.22143853365078 45874 112.062 1.999
512 2.22143843938750 174408 6115.546 2.000

Table 2: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the first implicit Euler method

I T n n CPU time s
16 2.22401442029031 216 0.015 -
32 2.22190444202100 824 0.031 -
64 2.22164931023410 3152 0.156 1.994
128 2.22149500152201 12037 5.296 1.998
256 2.22143853365245 45874 112.062 1.999
512 2.22143828332936 174408 6115.546 2.000

Numerical experiments for N = 2, f(u) = eu(x,t), and u(x, 0) = 0
First case: ξ = 1/10, u(x, 0) = 0

Table 3: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the explicit Euler method

I T n n CPU time s
16 2.22062533620715 216 0.015 -
32 2.22123973166955 824 0.031 -
64 2.22139136112212 3152 0.156 1.994
128 2.22142804425813 12037 5.296 1.998
256 2.22143871226464 45874 112.062 1.999
512 2.22143842833291 174408 6115.546 2.000

Table 4: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the first implicit Euler method
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I T n n CPU time s
16 2.22062555029006 216 0.015 -
32 2.22124000255652 824 0.031 -
64 2.22139001163220 3152 0.156 1.994
128 2.22142811005221 12037 5.296 1.998
256 2.22143871226464 45874 112.062 1.999
512 2.22143843628366 174408 6115.546 2.000

Numerical experiments for N = 2, f(u) = eu(x,t), andu(x, 0) = 0
First case: ξ = 1/25, u(x, 0) = 0

Table 5: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the explicit Euler method

I T n n CPU time s
16 2.22062331088738 216 0.015 -
32 2.22123973065225 824 0.031 -
64 2.22139126881106 3152 0.156 1.994
128 2.22142742555813 12037 5.296 1.998
256 2.22143843628332 45874 112.062 1.999
512 2.22143843628329 174408 6115.546 2.000

Table 6: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the first implicit Euler method

I T n n CPU time s
16 2.22062211596601 216 0.015 -
32 2.22139610255772 824 0.031 -
64 2.22139122698531 3152 0.156 1.994
128 2.22149454456510 12037 5.296 1.998
256 2.22143843628292 45874 112.062 1.999
512 2.22143843629532 174408 6115.546 2.000

Numerical experiments for N = 2, f(u) = eu(x,t), and u(x, 0) = 0
First case: ξ = 1/50, u(x, 0) = 0

Table 7: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the explicit Euler method
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I T n n CPU time s
16 2.22062315691215 216 0.015 -
32 2.22124002266589 824 0.031 -
64 2.22139156335584 3152 0.156 1.994
128 2.22149454456510 12037 5.296 1.998
256 2.22143836331233 45874 112.062 1.999
512 2.22143890662580 174408 6115.546 2.000

Table 8: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the first implicit Euler method

I T n n CPU time s
16 2.22062321224253 216 0.015 -
32 2.22124055336621 824 0.031 -
64 2.22139111235889 3152 0.156 1.994
128 2.22142842522332 12037 5.296 1.998
256 2.22143883398787 46874 112.062 1.999
512 2.22143800589660 175408 6115.546 2.000

Numerical experiments for N = 3, f(u) = eu(x,t), and u(x, 0) = 0
First case: ξ = 1/100, u(x, 0) = 0

Table 9: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the explicit Euler method

I T n n CPU time s
16 2.22062331088015 1143 0.011 -
32 2.22123973086610 4555 0.032 -
64 2.22139126765628 18203 0.156 1.994
128 2.22142867486657 72797 5.296 1.998
256 2.22143799525625 144978 112.062 1.999
512 2.22143842833295 279201 6115.546 2.000

Table 10: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the first implicit Euler method
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I T n n CPU time s
16 2.22062325088010 1144 0.011 -
32 2.22123974086616 4556 0.033 -
64 2.22139126786563 18203 0.156 1.994
128 2.22142867486659 72797 5.296 1.998
256 2.22143836398753 145874 112.062 1.999
512 2.22143829065800 274408 6115.546 2.000

Remark 4.1. In the case where the initial data u(x, 0) = 0, and the reaction
term increases as a function of f(u) = eu, we know that the blow up time of the
continuous solution of (1.1)–(1.3) is equal 2.22.
In the case where ξ decays to zero the blow-up time of the solution u is the same
as the one of the solution α(t) of the following differential equation

α
′′
(t) = f(α(t)), α(0) = 0, α

′
(0) = 0.

We observe also that the value of the blow-up time of α(t) = 2.22, see Remark 2.1.
We observe that the the blow-up time of the solution is equal 2.22.
We observe from Tables 1–10 that when ξ decays to zero, then the numerical blow-
up time of the discrete solution goes to 2.22.

In the following, we give some plots to illustrate our theoretical analysis given
in the previous section.

In following Figures 1-16, we can appreciate that the solution blow up in a finite
time.
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Figure 1: Evolution of discrete so-
lution, source N = 2, f(u) = eu,
I = 16, ε = 1/5, (explicit scheme)
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Figure 2: Evolution of discrete so-
lution, source N = 2, f(u) = eu,
I = 16, ε = 1/5, (implicit scheme)
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Figure 3: Evolution of discrete so-
lution, source N = 2, f(u) = eu,
I = 32, ε = 1/5, (explicit scheme)
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Figure 4: Evolution of discrete so-
lution, source N = 2, f(u) = eu,
I = 32, ε = 1/5, (implicit scheme)
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Figure 5: Evolution of discrete so-
lution, source N = 2, f(u) = eu,
I = 16, ε = 1/10, (explicit scheme)
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Figure 6: Evolution of discrete so-
lution, source N = 2, f(u) = eu,
I = 16, ε = 1/10, (implicit scheme)
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Figure 7: Evolution of discrete solu-
tion, source N = 2, f(u) = eu,I =
32, ε = 1/10, (explicit scheme)
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Figure 8: Evolution of discrete so-
lution, source N = 2, f(u) = eu,
I = 32, ε = 1/10, (implicit scheme)
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Figure 9: Evolution of discrete so-
lution, source N = 3, f(u) = eu,
I = 16, ε = 1/100, (explicit scheme)
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Figure 10: Evolution of discrete so-
lution, source N = 3, f(u) = eu,
I = 16, ε = 1/100, (implicit scheme)
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Figure 11: Evolution of discrete so-
lution, source N = 3, f(u) = eu,
I = 64, ε = 1/100, (explicit scheme)
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Figure 12: Evolution of discrete so-
lution, source N = 3, f(u) = eu,
I = 64, ε = 1/100, (implicit scheme)
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Figure 13: Evolution of discrete so-
lution, source N = 2, f(u) = eu,I =
16, ε = 1/50, (explicit scheme)
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Figure 14: Evolution of discrete so-
lution, source N = 2, f(u) = eu,
I = 16, ε = 1/50, (implicit scheme)
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Figure 15: Evolution of discrete so-
lution, source N = 2, f(u) = eu,
I = 32, ε = 1/50, (explicit scheme)
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Figure 16: Evolution of discrete so-
lution, source N = 2, f(u) = eu,
I = 32, ε = 1/50, (implicit scheme)
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[1] Abia L. M., López-Marcos J. C. and Martinez J., On the blow-up time con-
vergence of semidiscretizations of reaction-diffusion equations, Appl. Numer.
Math., 26 (4) (1998), 399-414.
DOI: https://doi.org/10.1016/S0168-9274(97)00105-0
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