J. of Ramanujan Society of Mathematics and Mathematical Sciences
Vol. 8, No. 2 (2021), pp. 109-152

ISSN (Online): 2582-5461
ISSN (Print): 2319-1023

THE DECAY ESTIMATE AND ASYMPTOTIC BEHAVIOUR OF
THE BLOW UP TIME FOR EVOLUTION EQUATION WITH A
NON LINEAR SOURCE

Halima. Nachid, N’takpe Jean Jacques and Yoro. Gozo

Université Nangui Abrogoua, UFR-SFA,
Département de Mathématiques et Informatiques,
02 BP 801 Abidjan 02, (Cote d’Ivoire)

Orcid:https://orcid.org/0000-0003-1244-8139
E-mail : nachid.h@iugbh.edu.ci, njjlabellsfauna225@gmail.com, yorocarol@yahoo.fr

(Received: Apr. 29, 2021 Accepted: Jun. 23, 2021 Published: Jun. 30, 2021)

Abstract: In this paper, we consider the following initial-boundary problem

g (z,t) — ELu(z, t) + blu(z,t)|9 = f(u(z,t)) in Qx(0,7),
u(z,t) =0 on 00 x (0,7,

u(z,0) =0 in €,

u(z,0) =0 in £,

(P)

where ) is a bounded domain in RY with smooth boundary 02, L is an elliptic
operator, where initial data in which our initial energy can take positive values,
with initial and boundary conditions of Dirichlet type, and the nonlinear function
f(s) is a positive, increasing and convex function for the nonnegative values of s
and b, £ is a positive parameter.

This work is concerned with a nonlinear wave equation with nonlinear source terms
acting in this equation. We will prove that the solution of our considered problem
blows up in finite time provided that the initial data and the parameter £ are small
enough.
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Under some assumptions, we show that the solution of the above problem blows
up in a finite time and its blow-up time goes to the one of the solution of the
following differential equations

a’(t) = fla(t)), t>0
a(0) =0, o'(0)=0.

Finally, we give some numerical results to illustrate our analysis.

Keywords and Phrases: Nonlinear wave equation, nonlinear wave, blow-up, con-
vergence, initial boundary value problem, nonlinear hyperbolic equation, asymp-
totic behavior, finite difference method, numerical blow-up time.
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1. Introduction
Let Q be a bounded domain in RY with smooth boundary 0. Consider the
following initial-boundary value problem

u(x,t) — ELu(x,t) + blug(x, t)|? = f(u(x,t)) in Qx (0,7, (1.1)
u(z,t) =0 on 0 x (0,7, (1.2)
u(z,0) =0 in Q, (1.3)
u(z,0) =0 in Q, (1.4)

where f(s) is a positive, increasing and convex function for the nonnegative values
of s, OOO % < 400, and b, £ is a positive parameter,

A great number of processes of the applied sciences can be modeled by means of
evolution equations involving differential operators, or systems of such equations,
hyperbolic partial differential equations are used to describe evolutionary processes
with the property that information propagate with a finite speed. Omne of the

simplest and therefore standard models is that of the free wave equation.
uy — Au =0,

where ¢ denotes the speed of propagation and A = """ | 97, the usual Laplacian in
Euclidean space. This equation arises together with certain initial and boundary
conditions if one models the oscillatory behaviour of vibrating strings, membranes
or the propagation of sound.

Here u = u(t, ) denotes a displacement or a pressure and thus a time-dependent
scalar field. In electrodynamics the unknowns are the electric and the magnetic
field, which satisfy in vacuum a related equation. Oscillations of vibrating strings
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and membranes are described by quasi-linear equations due to a relation between
length/area deformation and energy.

Solutions of nonlinear wave equations which blow up in a finite time have been

the subject of investigation of many authors (see [5], [8], [12], [14], [28], [29], [35],
and the references cited therein).
By standard methods, local existence, uniqueness, blow up and global existence
have been treated by a number of authors ( Keller [23], Sattinger [35]) where they
have shown that the solutions to the initial value problem or to initial-boundary
value problems for classical nonlinear wave equations in the form

Putt—i-Au:F(u),

in one, two or three dimensions are not stable in time for arbitrary initial data and
arbitrary nonlinearities. Their proofs of these results are based upon a comparison
principle together with a Huygens-Fresnel principle coupled with solving an initial
value problem for an associated ordinary differential equation in time. The size of
the nonlinearity generally determines the escape time in their proofs. They proved
under some restrictions on the parameters and the initial data several results on
local existence and global existence of a weak solution. They also showed that any
weak solution with negative initial energy blows up in finite time. See in this regard
[10, 11], [15], [20], [21], [24], [28], [29-30], [38], [32], [42], and references therein.

We mention also the work by Levine and Todorova [26] in which the authors
considered the following Cauchy problem:

gy — Au+ alug|97% — blu|"u = 0,

For b = 0, it is well known that the damping term a|u;|?"? assures global existence
and decay of the solution energy for arbitrary initial data (see [17]).
For a = 0, the source term causes finite-time blow-up of solutions with a large ini-
tial data (negative initial energy) (see [3] ). The interaction between the damping
term aluy|972 and the source term b|u|?"2u makes the problem more interesting.
This situation was first considered by Levine [11, 12] in the linear damping case (q
= 2), where he showed that solutions with negative initial energy blow up in finite
time.
Similar results have also been established by Vitillaro in [38] combined the argu-
ments in [17] to extend these results to situations where the damping is nonlinear
and the solution has positive initial energy.

In this paper, we are interested in the asymptotic behavior of the blow-up time
when b = 0, £ approaches zero and the initial data is small enough also in the case
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where € is large enough and its size is taken as parameter.
Our work was motivated by the paper of Friedman and Lacey in [9], where they
have considered the following initial-boundary value problem

(x,t) = eAu(z,t) + f(u(z,t)) in Qx(0,7),

where A is the Laplacian, f(s) is a positive, increasing, convex function for the non-
negative values of s, and fooo % < 00, up(z) is a continuous function in . Under
some additional conditions on the initial data we have shown that the solution of
the above problem blows up in a finite time and its blow-up time tends to the one

of the solution A(¢) of the following differential equation
A(t) = f(A@R)), AO) =M, (1.5)

as € goes to zero where M = sup,.q uo(x).

The proof developed in [8] are based on the construction of upper and lower so-
lutions and it is difficult to extend the above result to the problems described in
(1.1)-(1.4).

In this paper, we prove a similar result. Precisely, we show that when & is small
enough, any solution of (1.1)-(1.4) blows up in a finite time and its blow-up time
tends to the one of the solution a(t) of the following differential equation below

a (t) = fla(t)),a(0) =0, a(0)=0. (1.6)

We also prove that the above result remains valid if €2 is large enough and its size
is taken as parameter. Our paper is written in the following manner. In the next
section, under some assumptions,we show that any solution u of (1.1)-(1.4) blows
up in a finite time and its blow-up time goes to the one of the solution a(t) of
the differential equation defined in (1.6). Finally, in the last section, we give some
numerical results to illustrate our analysis.

2. Preliminaries and Notations
Throughout this paper  be a bounded open subset of RY with smooth bound-
ary 0€). The elliptic operator in divergence form L is defined as follows

0 ou
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The coefficient a;;(x) € C'(Q) satisty the following relation aj; : Q> R, ay €
C’l(Q),aij:aﬁ-, 1<'L SN

N

Z 2)6€, > ClE)? for €eRY, C >0,

Here (0,7) is the maximal time interval of existence of the solution w. The time
T may be finite or infinite. When T is infinite, we say that the solution u exists
globally. When T is finite, the solution u develops a singularity in a finite time,
namely

lim fJu(z, t)[[oc = +o0,

where |[u(z,t)]|oc = Supgeq |u(z,t)]. In this last case, we say that the solution u
blows up in a finite time and the time 7" is called the blow-up time of the solution
u.

Throughout this paper, Introduce the function F(s fo o)do. and we sup-
pose that

> ds
—— <+
V F(s)
3. Blow-up of the Solution for the Problem

In this section, under some assumptions, we show that any solution u of (1.1)-
(1.4) blows up in a finite time and its blow-up time goes to the one of the solution
of a differential equation defined in (1.6) when £ tends to zero.

Before starting, let us recall a well known result. Consider the following eigenvalue
problem

—Lp=Xp in Q, (3.1)
=0 on 09,
>0 in €.

The above problem has a solution (¢, \) with A > 0. We can normalize ¢ so that

Jo pdx = 1.
Now, let us state our result on the blow-up.

Theorem 3.1. Let F(z fo s)ds and suppose that fo m < +o0. If € <
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A foo ds then the solution u of (1.1)-(1.4) blows up in a finite time and its blow-up
time T satzsﬁes the following relation
¢A

T:Te(1+7)+o(§) as & —0 (3.4)

1 +o00 (s . . . . .
where T, = % fo NGT) is the blow-up time of the solution a(t) of the differential

equation defined in (1.6).

Proof. Since (0,7) is the maximal time interval on which the solution u exists,
our aim is to show that 7' is finite and satisfies the above inequality. Introduce the
function v(t) defined as follows

v(t):/ggp(a:)u(x,t)dx for ¢te(0,7).

Take the derivative of v in ¢ and use(1.1) to obtain

f/Lu dm+/f Jdx.

Applying Green’s formula, we arrive at

zg/ﬂuLgpdx%—/ﬂf(u)godx.

Using (3.1) and Jensen’s inequality, we find that

V'(t) = —gu(t) + f(u(),
which implies that
V() > f(u(t)) <1 - fv_(t)) :
fu(t))
We observe that
- ds > sup | ds > sup ——~

o f(s) T =0 o f(s) T t>0f()

because f(s) is an increasing function for the nonnegative values of s. We deduce
that v"(t) > (1 — £A) f(v(t)), which implies that

1—§A/f s te(0,T). (3.5)
v(0) = 0, V(0 (3.6)
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Let ((t) be the solution of the following differential equation

Bt 1—§A/f s te(0,Ty). (3.7)
B(0) =0, F(0 (3.8)

where (0,7p) is the maximal time interval of existence of 5(t). It is not hard to see
that

BU(t) = (1= EA) f(y(1)).

Multiply both sides of the above equality by §'(¢) to obtain

(PE8) - - enraon. (3.9)
Integrating the equality in (3.9) over (0,t), we find that
POF _ (1 - eayr (s, (3.10)

which implies that

= V2(1 = EA)F(B(t)).

This equality may be rewritten as follows

_dB g
NG VI — €AVt

After integration over (0,7p), we discover that

1 < ds
TO == .
21— €A) Jo /F(s)

Since the above integral converges, we see that £(t) blows up at the time 7. On
the other hand, the maximum principle implies that

u(t) > B() for te (0,T.), (3.11)

where T, = min{Ty, T'}. We deduce that T' < Tj. Indeed, suppose that T" > T.
From (3.11), it is not difficult to see that v(7,) = oo which implies that u blows
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up at the times Ty But this contradicts the fact that (0,7") is the maximal time
interval of existence of the solution u. Hence, we have

< g
T<T, i

1
- Ja=A) Jo JF(s)

Now let us define the function U(t) as follows

(3.12)

U(t) = supu(x,t) for t € (0,T).

e

Obviously, we have U(0) = 0 and U’(0)=0 and there exists zo € Q such U(t) =
u(xg,t). It is not hard to see that Lu(zg,t) < 0. Consequently, we get

{U”() fU@),
U©0) =0, U'(0)=0,

which implies that
U'(t) < /0 F(U(s))ds, (3.13)
U(0) =0, U'(0)=0. (3.14)

Let ¢ be the solution of the differential equation below

/f s, te(0,Ty), (3.15)
»(0) =0, ¥'(0 (3.16)

where (0,7}) is the maximal time interval of existence of w( ) As we have seen for
the solution 3(t), ¥ (t) blows up at the time T} = \f I \/_S)

principle, we find that
Ult) < w(t) for te(0,T.),

where T, = min{7T,T}}. This implies that T,, = T. In fact, if T} > T, we obtain
U(T) < (T) < 400 which is a contradiction. Therefore

1 > ds
T>T = E/0 NGO} (3.17)
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Apply Taylor’s expansion to obtain

:1+g+0(§).

1
V(1 —£4) 2
Use (3.12), (3.17) and the above relation to complete the rest of the proof. [

Remark 8.1, If £(5) = ¢* then F(s) = ¢~ 1. Therefore T, = 35 [ - and
its value 1s slightly equal 2.22.

4. Numerical Results

In this section, we consider the radial symmetric solutions of (1.1)-(1.4) when
2= B(0,1), L = A and f(u) = €. Hence the problem (1.1)-(1.4) may be rewritten
as follows

N -1

Uy = & (um« + ur> + f(u), r€(0,1), te(0,T) (4.1)

w(0,8) =0, u(l,8)=0 te(0,T),
u(r,0) =ug u(r,0) =0, re(0,1).

Let I be a positive integer and let h = 1/1. Define the grid x; = ih, 0 < ¢ < I and
approximate the solution u of (4.1)-(4.3) by the solution U}(Ln) = (Uén), o UI(")) of
the following explicit scheme

UgY — 20 + Uyt 201" — 20"

NE = ENT =0+ F(USY),
R i : U 20 U (V- ) U - U
A2 n? ih 2h
UMY 1<i<T -1,

U =0,
v =0, UMY =0, 0<i<I
_1
Here, we take At, = min(%Q,f(JU,’}Hooz) with HU,?)HOO = supg<;<; |Uf]. Let us
notice that the condition At, < % ensures the stability of the explicit scheme. We

also approximate the solution u of (4.1) — (4.3) by the solution U ,(Ln) of the implicit
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scheme below

Uén-l—l) . 2Uén) 4 Uﬂ(n—l) B N2U1(n+1) . 2Uén+1)

n)
Ui(n-i-l) . 2Uz‘(n) + Ui(n_l) _ 5 UZ(:;‘U 2Ui(n+1) + Ui(:q_l) . (N o 1) Uz(-ti_l) _ Ui(:lii‘l)
INE E ih 2h

+ UMY, 1<i<T -1,
U =0 n>0,
U =0, UMY =0, 0<i<I

where At,, = mln( FUUOr ||Oo )
The explicit scheme may be written as follows:

At2 h2 ih
+ UM, 1<i<I—1,
U 20 + U (N - U - U‘”i)

ot - ot (Ufi% —2W" Uy (V- U - Ufi‘%)
2h

Ui(”Jrl) . 2Uz'(n) + Ui(nfl) _ Atié‘

h? ih 2h
+ARFUM), 1<i<T -1,

or

Ul —2u™M + U (N -1 U - U
(n+1) _ (n) _ rr(n=1) 2 i+1 i+1 i—1
U; = 2U; U; + At € ( 72 + 0 o

+ARFUM), 1<i<I-1,

or

Ut — o™ _ i — 2y = 24 »

N —1)At? N —1)At
" % - %Ufﬁ +A2FUM), 1<i<I-1,

to 1
S0 gy
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or
Ui( = EE (1+ ( 5 )>Ui(+% +2(1 - Y )Ui( )
At? N -1 _
£h2”<1 - %WJ’% UV AR FUM), 1<i<T -1,

Ut =0 n>0,
v =0, vV =0, 0<i<I

For ¢ =1, Ul(nﬂ) =
U + A F(Uf)
or U™ =0 then
Fori =1, U™ = (2(1 A% )) e (5“ 1+ @ ”)) U gD L A2 f(U™),
Fori =2, Uy = (41— 820)) U+ (2(1 - fﬁﬁ")) Ui+ (S 1+ O5))
uyY - UV A f(ug),
Fori — 3. U?En-I—l) _ (52;%(1 _ (N2—1))> UQ")+<2(1 sAt )> U?En)Jr(&AtQ (1+ & ))>
Ut - UV A fug),

L1+ O UL + 201 — LU + 95 (1 - SE T —

21

For i = I —1, Uf"Y = (S50 9500f) + (20— $)) 0p — 10 +
(820 +950) U — U = 10700 +A8 F(U; — 1),

or U™ =0 then
Fori=1-1, Ul(ﬁl) = (52_5721(1 - %)) Uj(i)z + <2< %ﬁ)) Ur— 10 — Uy —
10D L A2 (U — 1),

lead us to the linear system below

where A is a I x [ tridiagonal matrix defined as follows

2(1_§A£2) 5At 2 (1 +(N 1)) 0 0
A A At? —
8 (1 (-0 2(1 €A e+ Oy o

A= 0

gm (1 +(N 1))

' At? N-1 At
0 0 %(1—%) 2(1_§h2)
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implies that

Qo bo 0 - 0
Co Qo bo 0
A=10
bo
0 0 e O ag
with EAL
tn
= 2(1 - 12 )7
A2 (N—1),
by = (1 =1,.,1—-2
0 h2 ( + 2 )a ? JRERE) )
A2 (N—-1).
= (1 — =1,...,1—-1
Co h2 ( 22 )7 1 ) ) )

(FMm). = —Ui(n_l) + A2 f (UZ-(")) and A a three-diagonal matrix verifying the fol-
lowing propertles
Ay =201 -0y 50 0<i<Tland A; ;; = (1 — &1
2
Ajjpr = Sl (1 + WDy 2 << T —2s0 thatd,; > Z#J
It follows that Uh exists for n > 0. In addition, since Ul b s nonnegative,U,ﬁn) is

also nonnegative for n > 0.
We need the following definition.

Definition 4.1. We say that the discrete solution U}(Ln) of the explicit scheme or
the implicit scheme blows up in a finite time if lim,,_,o ||U,(Ln) |o = 00 and the series
S Aty converges where ||UM |0 = SUPg<i<r U™, The quantity °°° At,, is
called the numerical blow-up time of the discrete solution Uf(bn)

In the following tables, in rows, we present the numerical blow-up times, the
numbers of iterations n, the CPU times and the orders of the approximations
corresponding to meshes of 16, 32, 64, 128. We take for the The numerical blow-up
time 7" = Y77 ' At; which is computed at the first time when At,, = [T+ —T"| <
10710, The order( ) of the method is computed from

_ log((Tun — Ton)/(Ton — Th))
log(2) .

Numerical experiments for N =2, f(u) = ¢“@" and u(z,0) = 0
First case: £ = 1/5, u(z,0) =0
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Table 1: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the explicit Euler method

I ™ n CPU time s
16 | 2.22401460487680 216 0.015 -
32 | 2.22219042903374 824 0.031 -
64 | 2.22164923986443 | 3152 0.156 1.994

128 | 2.22149404152201 | 12037 2.296 1.998
256 | 2.22143853365078 | 45874 112.062 1.999
012 | 2.22143843938750 | 174408 | 6115.546 | 2.000

Table 2: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the first implicit Euler method

1 ks n CPU time s
16 | 2.22401442029031 216 0.015 -
32 | 2.22190444202100 824 0.031 -
64 | 2.22164931023410 3152 0.156 1.994

128 | 2.22149500152201 | 12037 2.296 1.998
256 | 2.22143853365245 | 45874 112.062 1.999
012 | 2.22143828332936 | 174408 | 6115.546 | 2.000

Numerical experiments for N =2, f(u) = ¢“@ and u(z,0) =0
First case: £ = 1/10, u(z,0) =0

Table 3: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the explicit Euler method

1 A n CPU time s
16 | 2.22062533620715 216 0.015 -
32 | 2.22123973166955 824 0.031 -
64 | 2.22139136112212 3152 0.156 1.994

128 | 2.22142804425813 | 12037 0.296 1.998
256 | 2.22143871226464 | 45874 112.062 1.999
012 | 2.22143842833291 | 174408 | 6115.546 | 2.000

Table 4: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the first implicit Euler method
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I UG n CPU time s
16 | 2.22062555029006 216 0.015 -
32 | 2.22124000255652 824 0.031 -
64 | 2.22139001163220 | 3152 0.156 1.994

128 | 2.22142811005221 | 12037 5.296 1.998
256 | 2.22143871226464 | 45874 112.062 1.999
012 | 2.22143843628366 | 174408 | 6115.546 | 2.000

Numerical experiments for N =2, f(u) = ¢“®" andu(z,0) =0
First case: £ = 1/25, u(z,0) =0

Table 5: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the explicit Euler method

1 s n CPU time s
16 | 2.22062331088738 216 0.015 -
32 | 2.22123973065225 824 0.031 -
64 | 2.22139126881106 | 3152 0.156 1.994

128 | 2.22142742555813 | 12037 5.296 1.998
256 | 2.22143843628332 | 45874 112.062 1.999
012 | 2.22143843628329 | 174408 | 6115.546 | 2.000

Table 6: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the first implicit Euler method

1 UG n CPU time s
16 | 2.22062211596601 216 0.015 -
32 | 2.22139610255772 824 0.031 -
64 | 2.22139122698531 | 3152 0.156 1.994

128 | 2.22149454456510 | 12037 5.296 1.998
256 | 2.22143843628292 | 45874 112.062 1.999
012 | 2.22143843629532 | 174408 | 6115.546 | 2.000

Numerical experiments for N = 2, f(u) = ¢“®! and u(x,0) =0
First case: £ = 1/50, u(z,0) =0

Table 7: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the explicit Euler method
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1 ™ n CPU time s
16 | 2.22062315691215 216 0.015 -
32 | 2.22124002266589 824 0.031 -
64 | 2.22139156335584 | 3152 0.156 1.994

128 | 2.22149454456510 | 12037 5.296 1.998
256 | 2.22143836331233 | 45874 112.062 1.999
512 | 2.22143890662580 | 174408 | 6115.546 | 2.000

Table 8: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the first implicit Euler method

1 T n CPU time S
16 | 2.22062321224253 216 0.015 -
32 | 2.22124055336621 824 0.031 -
64 | 2.22139111235889 3152 0.156 1.994

128 | 2.22142842522332 | 12037 2.296 1.998
256 | 2.22143883398787 | 46874 112.062 1.999
512 | 2.22143800589660 | 175408 | 6115.546 | 2.000

Numerical experiments for N =3, f(u) = ¢“@ and u(z,0) =0
First case: £ = 1/100, u(x,0) =0

Table 9: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the explicit Euler method

I " n CPU time S
16 | 2.22062331088015 1143 0.011 -
32 | 2.22123973086610 | 4555 0.032 -

64 | 2.22139126765628 | 18203 0.156 1.994
128 | 2.22142867486657 | 72797 2.296 1.998
256 | 2.22143799525625 | 144978 112.062 1.999
012 | 2.22143842833295 | 279201 | 6115.546 | 2.000

Table 10: Numerical blow-up times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the first implicit Euler method
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I T n CPU time S
16 | 2.22062325088010 | 1144 0.011 -
32 | 2.22123974086616 | 4556 0.033 -

64 | 2.22139126786563 | 18203 0.156 1.994
128 | 2.22142867486659 | 72797 2.296 1.998
256 | 2.22143836398753 | 145874 112.062 1.999
012 | 2.22143829065800 | 274408 | 6115.546 | 2.000

Remark 4.1. In the case where the initial data u(x,0) = 0, and the reaction
term increases as a function of f(u) = e, we know that the blow up time of the
continuous solution of (1.1)-(1.3) is equal 2.22.

In the case where £ decays to zero the blow-up time of the solution w is the same
as the one of the solution a(t) of the following differential equation

o (t) = fla(t), a(0)=0, a(0)=0.
We observe also that the value of the blow-up time of a(t) = 2.22, see Remark 2.1.
We observe that the the blow-up time of the solution is equal 2.22.
We observe from Tables 1-10 that when & decays to zero, then the numerical blow-
up time of the discrete solution goes to 2.22.

In the following, we give some plots to illustrate our theoretical analysis given
in the previous section.

In following Figures 1-16, we can appreciate that the solution blow up in a finite
time.

Figure 1: Evolution of discrete so- Figure 2: Evolution of discrete so-
lution, source N = 2, f(u) = e, lution, source N = 2, f(u) = e*,
I =16, ¢ =1/5, (explicit scheme) I =16, ¢ = 1/5, (implicit scheme)
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0
0 0.2 0.4

Figure 3: Evolution of discrete so-
lution, source N = 2, f(u) = e,
I =32, ¢=1/5, (explicit scheme)

Figure 5: Evolution of discrete so-

lution, source N = 2, f(u) = e*,

I =16, =1/10, (explicit scheme)

Figure 7: Evolution of discrete solu-
tion, source N = 2, f(u) = e, I =
32, e = 1/10, (explicit scheme)

0.2 0.4 0.6

Figure 4: Evolution of discrete so-
lution, source N = 2, f(u) = e,
I =32, e =1/5, (implicit scheme)

Figure 6: Evolution of discrete so-

lution, source N = 2, f(u) = e,

I =16, ¢ = 1/10, (implicit scheme)

Figure 8: Evolution of discrete so-
lution, source N = 2, f(u) = e*,
I =32, ¢ =1/10, (implicit scheme)
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0 0.2 0.4 0.6 0.8
node

Figure 9: Evolution of discrete so-
lution, source N = 3, f(u) = e,
I =16, e = 1/100, (explicit scheme)

0.2 0.4 0.6 0.

Figure 11: Evolution of discrete so-
lution, source N = 3, f(u) = e,
I =64, e =1/100, (explicit scheme)

Figure 13: Evolution of discrete so-
lution, source N =2, f(u) = e*,I =
16, € = 1/50, (explicit scheme)

0
0 0.2 0.4 0.6 0.8
node

Figure 10: Evolution of discrete so-
lution, source N = 3, f(u) = e,
I =16, e = 1/100, (implicit scheme)

g
820

10

0 0.2 0.4 0.6 0.8

Figure 12: Evolution of discrete so-
lution, source N = 3, f(u) = e,
I =64, =1/100, (implicit scheme)

Figure 14: Evolution of discrete so-
lution, source N = 2, f(u) = e*
I =16, ¢ = 1/50, (implicit scheme)
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Figure 15: Evolution of discrete so- Figure 16: Evolution of discrete so-

lution, source N = 2, f(u) = e, lution, source N = 2, f(u) = e,

I =32, ¢ =1/50, (explicit scheme) I =32, ¢ =1/50, (implicit scheme)
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